Clustering in Distributed Incremental Estimation in Wireless Sensor Networks

نویسندگان

  • Sung-Hyun Son
  • Mung Chiang
  • Sanjeev R. Kulkarni
  • Stuart C. Schwartz
چکیده

Energy efficiency, low latency, high estimation accuracy, and fast convergence are important goals in distributed incremental estimation algorithms for sensor networks. One approach that adds flexibility in achieving these goals is clustering. In this paper, the framework of distributed incremental estimation is extended by allowing clustering amongst the nodes. Among the observations made is that a scaling law exists where the estimation accuracy increases proportionally with the number of clusters. The distributed parameter estimation problem is posed as a convex optimization problem involving a social cost function and data from the sensor nodes. An in-cluster algorithm is then derived using the incremental subgradient method. Sensors in each cluster successively update a cluster parameter estimate based on local data, which is then passed on to a fusion center for further processing. We prove convergence results for the distributed in-cluster algorithm, and provide simulations that demonstrate the benefits clustering for least squares and robust estimation in sensor networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

MLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks

Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Tracking performance of incremental LMS algorithm over adaptive distributed sensor networks

in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006